Kapitel 5.1

Grundelemente Logik und Wissen

Hartmut D ö p e I

Beratung für ökonomische und ökologische Fertigungslogistik

Wissensbasierte Systeme (KI) Wissensverarbeitung

Definition

W	issen	Kenntnisse / Kenntnis, Gelehrsamkeit, Bewusstsein (von etwas)
	Deklaratives Wissen	Beschreibung des "Wissens" durch Fakten und Begriffe (statisch)
	Prozedurales Wissen	Ausführunge des Deklarativen Wissen durch Regeln (dynamisch)

Der Baustein für integrierte Unternehmenskonzepte © Dipl. Wirtschaftsingenieur

Hartmut

D ö p e I

Beratung für ökonomische und ökologische Fertigungslogistik

Definition

Logik (grch)

Lehre vom richtigen Denken und Folgern.
Folgegerichtetes Denken, Folgerichtigkeit.

grch. logos "Wort, Rede, Vernunft"

Aussagenlogik	Behandelt die "Algebra" von Aussagen (wahr, falsch) und ihre Verknüpfungen.	
Prädikatenlogik	Behandelt die formale Analyse von Aussagen. Die Aussagenformen werden dabei als Funktion mit Konstanten und Variablen dargestellt	
Fuzzy Logik	Erweiterung der klassischen Logik um unscharfe Mengenzugehörigkeiten und Regeln, für die keine exakten Vorschriften bestehen.	

© Dipl. Wirtschaftsingenieur

Hartmut Döpel

Aussagenlogik

(Boolsche Algebra)

Menge	Komplementär- menge	Schnittmenge	Vereinigungs- menge

© Dipl. Wirtschaftsingenieur Hartmut Döpel

Beratung für ökonomische und ökologische Fertigungslogistik

Der Baustein für integrierte
Unternehmenskonzepte

Aussagenlogik

(Boolsche Algebra)

Sooisene riigesta)	A = 0 B = 0	A = 0 B = 1	A = 1 B = 0	A = 1 B = 1	
$A \cap \neg A$	0	0	0	0	Immer falsch
$A \cap B$	0	0	0	1	UND
$A \cap \neg B$	0	0	1	0	A und nicht B
A	0	0	1	1	A
$B \cap \neg A$	0	1	0	0	B und nicht A
В	0	1	0	1	В
$(A \cup B) \cap \neg (A \cap B)$	0	1	1	0	XOR (exklusive ODER)
$A \cup B$	0	1	1	1	ODER
$\neg (A \cup B)$	1	0	0	0	NOR
$(\neg A \cap \neg B) \cup (A \cap B)$	1	0	0	1	Äquivalenz
¬ В	1	0	1	0	nicht B
$\neg (B \cap \neg A)$	1	0	1	1	A oder nicht B
¬ A	1	1	0	0	nicht A
$\neg (A \cap \neg B)$	1	1	0	1	B oder nicht A
$\neg (A \cap B)$	1	1	1	0	NAND (nicht und)
$A \cup \neg A$	1	1	1	1	immer wahr
© Dipl. Wirtschaftsingenieur Hartmut Döpel					
Der Baustein für integrierte Beratung für ökonomische und ökologische Fertigungslogistik Unternehmenskonzepte					

Prädikatenlogik

Aussage

Der Baustein für integrierte
Unternehmenskonzepte

- 1. Für mindestens ein Objekt x gilt
- 2. Für alle Objekte XY gilt......

Beispiel umgangssprachlich	Alle Mensch sind sterblich	
	Der König ist ein Mensch	
Folgerung:	Der König ist sterblich	

© Dipl. Wirtschaftsingenieur Hartmut Döpel

Prädikatenlogik

Prädikate(Subjekt)

Kranich(x) Vogel(x)

Winter()

Objekte

Kranich(Kurt)

Der konkrete Kranich Kurt

Junktoren

- ∧ und
- ∨ oder
- nicht
- ⇒ impliziert

Quantoren

- ∀ für Alle *All-Quantor*
- ∃ es existiert Existenz-Quantor

© Dipl. Wirtschaftsingenieur

<u>Hartmut Döpel</u>

Beratung für ökonomische und ökologische Fertigungslogistik

Prädikatenlogik

Beispiel

Produktionsregeln

```
\exists x [Kranich(x)] \\ \forall x [Kranich(x) \Rightarrow Vogel(x)] \\ \forall x [Vogel(x) \land Flügel\_gebrochench(x) \Rightarrow verletzt(x)] \\ \forall x [Winter() \land verletzt(x) \Rightarrow zuwenig\_Nahrung(x)] \\ \forall x [zuwenig\_Nahrung(x) \Rightarrow verhungert(x)]
```

Objekte

⇒ Kranich(Kurt)

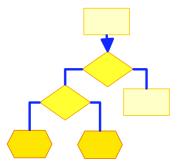
Eigenschaft

⇒ Flügel_gebrochen(Kurt)

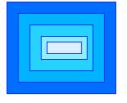
© Dipl. Wirtschaftsingenieur

Hartmut Döpel

Beratung für ökonomische und ökologische Fertigungslogistik



Definition


Prozedur (lat.)

Eine Kette von Anweisungen, die nacheinander abgearbeitet werden. lat. procedere "vorrücken, fortschreiten, vor sich gehen"

Rekursion

Definition einer Funktion oder eines Verfahrens durch sich selbst. Beispiel Fakultätsunktion n! 0! = 1; für n > 0 gilt: n! = n * (n-1)!

© Dipl. Wirtschaftsingenieur

Hartmut Döpel

Beratung für ökonomische und ökologische Fertigungslogistik

